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Abstract

Dissipative particle dynamics (DPD) is a potentially very effective approach in simulating mesoscale hydrodynamics.

However, because of the soft potentials employed, the simple no-slip boundary conditions are difficult to impose. In this

work, we first identify some of these difficulties and subsequently we propose a new method, based on an equivalent

force between wall- and DPD-particles, to impose boundary conditions. We demonstrate the validity of this approach

for steady problems (Poiseuille flow, lid-driven cavity) as well as for the unsteady oscillating flow over a flat plate.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The dissipative particle dynamics (DPD) model consists of particles which correspond to coarse-grained

entities, thus, representing molecular clusters rather than individual atoms. The particles move off-lattice
interacting with each other through a set of prescribed and velocity-dependent forces [1,2]. Specifically,

for simple fluids there are three types of forces acting on each dissipative particle:

� A purely repulsive conservative force.

� A dissipative force that reduces velocity differences between the particles.

� A stochastic force directed along the line connecting the center of the particles.
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Let us consider a system consisted of N particles having equal mass (for simplicity in the presentation) m,

position ri, and velocities vi. The aforementioned three types of forces exerted on a particle i by particle j are

given by:
FC
ij ¼ FC

ijðrijÞr̂ij; ð1Þ

FD
ij ¼ �cxDðrijÞðvij � r̂ijÞr̂ij; ð2Þ

FR
ij ¼ rxRðrijÞnijr̂ij; ð3Þ
where rij ” ri � rj, rij ” jrijj, r̂ij � rij=rij, and vij ” vi � vj. The variables c and r determine the strength of

the dissipative and random forces, respectively. Also, nij are symmetric Gaussian random variables with

zero mean and unit variance, and are independent for different pairs of particles and at different times;

nij = nji is enforced in order to satisfy momentum conservation. Finally, xD and xR are weight

functions.
All forces are acting within a sphere of interaction radius rc, which is the length scale of the system. The

conservative force is given by a soft potential (see [3]):
FC
ij ¼

aijð1� rij=rcÞr̂ij for rij 6 rc ¼ 1;

0 for rij > rc ¼ 1;

�

aij ¼
ffiffiffiffiffiffiffiffi
aiaj

p
, where ai and aj are conservative force coefficients for particle i and particle j. The requirement

of canonical distribution sets two conditions on the weight functions and the amplitudes of the dissipative

and random forces, see [2]. Specifically, we have that:
xDðrijÞ ¼ xRðrijÞ
� �2 ð4Þ
and
r2 ¼ 2ckBT ; ð5Þ
where T is the system temperature and kB the Boltzmann constant. The weight function takes the form:
xRðrijÞ ¼
1� rij=rc for rij 6 rc;

0 for rij > rc:

�

The time evolution of DPD particles is described by Newton�s law:
dri ¼ vidt; ð6Þ

dvi ¼
1

m
FC
i dt þ FD

i dt þ FR
i

ffiffiffiffiffi
dt

p� �
: ð7Þ
Here, FC
i ¼

P
i6¼jF

C
ij is the total conservative force acting on particle i; FD

i and FR
i are defined similarly.

There are several methods in integrating the DPD evolution equations; for a comparison of different

integrators see [4], and for a new and potentially more robust time integrator see [5]. While high-order

accurate solution methods are still under investigation, the main issue for DPD simulations in confined

geometries is the imposition of boundary conditions, specifically at solid boundaries. To this end, the

boundary conditions that have been used in DPD are based on general ideas implemented both in lattice

Boltzmann method (LBM) and molecular dynamics (MD) formulations. However, unlike the MD method,
the soft repulsion between DPD particles cannot prevent fluid particles from penetrating solid boundaries,

and thus extra effort is required to impose accurately the no-slip (or partial slip) wall boundary condition.

To the best of our knowledge, although good progress has been made, there is no yet consensus as to what
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type of boundary conditions performs best, especially in the presence of conservative forces as well as in

complex-geometry flows.

A broad classification of the three main approaches to impose boundary conditions in DPD was

provided in [6] as follows:

1. The Lees–Edwards method to impose planar shear, also used in LBM [7], which is essentially a way to

avoid modeling directly the physical boundary [8–10].

2. Freezing regions of the fluid to create a rigid wall or a rigid body, e.g. in particulate flows, see [1,9].

3. Combine different types of particle-layers with proper reflections, namely specular reflection, bounce-

back reflection, or Maxwellian reflection [11–13].

We will use the Lees–Edwards method later in Section 3.2, so here we provide its brief description. Con-

sider a system of particles in a periodic box and assume that the upper wall is moving with velocity Ux/2 and
lower wall with �Ux/2. Lees and Edwards [8] suggested a method to simulate such shear flow by applying

modified periodic boundary conditions. A particle crossing the upper boundary of the box at time t is re-

introduced through the lower boundary with its x-coordinate shifted by �Uxt and the x-velocity decreased

by Ux. For a particle crossing the lower boundary of the box the x-coordinate shift is Uxt and the x-velocity

is increased by Ux. In addition, in computing the force between particle i interacting with particle j through

the upper (lower) boundary, �Ux (+Ux) should be added to the relative velocity vij.
The third category is indeed quite broad, and the technical details in the various implementations pub-

lished so far are quite different. Since the method proposed in this paper also employs particle-layers as well
as reflections, we review in some more detail the most representative works published so far that fall under

category (3).

In Revenga et al. [11], a particle-layer is stuck on the solid boundary and effective dissipative and random

forces are obtained analytically on the DPD fluid particles by assuming a continuum limit. However, reflec-

tions were found necessary to reflect particles back into the fluid when they cross the wall since the effective

computed forces are not sufficient to prevent wall penetration. In Revenga et al. [6], the effect of specular,

Maxwellian and bounce-back reflections was also investigated. In specular reflections the velocity compo-

nent tangential to the wall does not change while the normal component is reversed. In the bounce-back
reflection both components are reversed. A Maxwellian reflection involves particles that are introduced

back into the flow with a velocity following a Maxwellian distribution centered around the wall velocity.

In Revenga et al. [6], a key non-dimensional parameter was identified that affects the wall slip velocity.

Specifically, there are five governing parameters in the DPD fluid system: m (the mass of particles); c
(the friction coefficient); rc (the cut-off radius); kBT (temperature); and kd = n�1/d (the average distance be-

tween particles, where d is the space dimension and n is the number density). We can define the dimension-

less friction coefficient
s � ck
dvT

;

where vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
is the thermal velocity. Large values of smean that the particles move very little in the

time scale associated with the velocity decaying due to thermal fluctuations. In Revenga et al. [6], the plane

Couette flow was considered in order to evaluate the above boundary conditions. The Lees–Edwards

boundary conditions work well for this model but the objective is to see what type of reflections are appro-

priate with their particle-layer approach. It was shown in [6] that for large values of s all three reflections

satisfy the no-slip condition. However, for small values of s the specular and Maxwellian reflections pro-

duce an excessive slip velocity at the wall while the bounce-back approach satisfies the no-slip condition. An
anomaly, however, was observed for the temperature profile very close to the wall at small values of s even
with the bounce-back boundary conditions. Another problem with the approach of Revenga et al. [6] is that
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the computation of forces is analytical and thus it cannot be easily extended to non-planar walls. In addi-

tion, the more difficult case where conservative forces are present was not considered. As we shall see below,

this is an important case as it induces large density fluctuations at the wall.

In Willemsen et al. [12], an extra particle-layer is included on the outside of the domain with the objective

of constructing a correct velocity profile that continues beyond the wall boundary. The position and veloc-
ities of particles inside that layer are determined from a layer of DPD particles adjacent to the boundary

and within distance rc (the interaction radius). For example, to impose zero velocity at a solid boundary,

points in the particle-layer outside the domain have tangential and normal velocity components opposite

from the original. When a DPD particle hits the boundary, then a bounce-back reflection is imposed. This

approach works very well in the absence of conservative forces but when conservative forces are present

density oscillations occur. In this case, a second layer of DPD particles was introduced by Willemsen

et al. [12] between rc and 2rc in order to compute the repulsive interaction. This approach seems to reduce

but not totally eliminate the density fluctuations at the walls. Overall, the method of Willemsen et al. [12] is
quite effective but it may not be easily implemented in complex-geometry flows, e.g. flow around a cube, as

it is not clear how to construct such ‘‘ghost’’ particle-layers in such situations.

Finally, in the third category above we have also included another implementation reported in [13]. In

this implementation, frozen particles are used to represent the wall but there is an extra thin layer of DPD

particles inside the domain and adjacent to the solid boundary where the no-slip boundary condition holds.

Specifically, a random velocity distribution with zero mean is enforced in this layer with corresponding

particle velocity
vi ¼ vR þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn � vRÞ2

q
� n � vR

� �
;

where vR is the random vector and n is the unit vector towards the flow domain. The thickness of the layer
in channel flows is selected as the minimum between 0.5% of the channel width and rc/2; this thin layer is

necessary to prevent the frozen wall to cool down the DPD fluid. Nevertheless, some temperature drop at

the wall boundaries is present in the simulation results reported in [13], which is undesirable.

The objective of the current work is to produce a systematic way of imposing the no-slip boundary con-

dition. The method we propose is under the general category (3) of the aforementioned list and can be easily

implemented for simple- and complex-geometry flows. The main idea is to provide a systematic procedure

to compute the repulsion force exerted by the wall particles on the fluid in combination with bounce-back

reflections, across a wide range of densities for liquids. The new method is verified for Poiseuille flow,
Stokes flow over an oscillating plate, and for the lid-driven cavity, using both analytical solutions and

corresponding high-order accurate Navier–Stokes solutions.
2. Diagnostic DPD simulations

In order to appreciate the degree of difficulty in imposing no-slip boundary conditions with the DPD

method as well as to identify the most influential parameters, we first perform some diagnostic DPD sim-

ulations for Poiseuille flow in a channel. The flow domain is a cube with size 10, and periodic boundary

conditions are imposed along two directions, see Fig. 1. In order to sustain the flow an external body force

equal to 0.02 (DPD units) is imposed. The density of the DPD fluid is nf = 3 and the temperature is kBT = 1.

The random and dissipative forces are defined by the parameters r = 3 and c = 4.5, respectively, while the
conservative force parameter is set to af = 25. We simulate the solid walls by freezing the DPD particles in

the wall regions. The wall particles interact with fluid particles, however, we do not allow them to move. In

some cases we will also use bounce-back boundary conditions. In order to investigate the effect of the wall

density, we will use different values for the number density of the walls, nw. In addition, we will vary the



Fig. 1. Sketch of the cubic domain for simulating Poiseuille flow. Periodic boundary conditions are imposed in two directions. The

walls are simulated by freezing DPD particles.
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conservative (also called repulsive) force coefficient for the wall particles, aw. The results we will present

below are obtained by subdividing the domain into 100 bins across the channel, while the simulations were

run for 200,000 time steps and the results were averaged over the last 40,000 time steps.

First, we simulate the case with the walls modeled by freezing the DPD particles in two layers inside each

wall region. The walls have the same density as the fluid, i.e., nw = nf, and the conservative force of the wall

DPD particles, aw, is the same as of the fluid particles, af. The results of the simulations are shown in Fig. 2.

The dashed line is density, the dash-dotted line is partial temperature along the periodic cross-flow direction
and triangles is the velocity profile across the channel. The dotted lines are the Navier–Stokes solutions cor-

responding to no-slip boundary conditions. The main finding here is that the fluid particles can penetrate

wall regions, as it can be seen from the non-zero density of the fluid particles inside the walls. This is the

result of the soft repulsive forces employed in the DPD formulation. In order to prevent the fluid particle
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Fig. 2. Left: Velocity profile. Right: Density and temperature profiles. The walls are simulated by freezing DPD particles (nw = nf;

aw = af).
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from penetrating the walls we can increase the wall density or the repulsion (conservative) force of the wall

particles.

Next, we increase the wall density to be four times higher than fluid density. The results from these DPD

simulations are shown in Fig. 3. There is no fluid penetration into the wall regions, however, large density

fluctuations appear across the channel. The density level of the fluid in the middle of the channel is elevated
and there are almost no particles close to the walls. The fluid is squeezed towards the middle of the channel

by the wall particles leading to a large velocity slip.

If we increase the repulsion force of the wall particles, keeping the wall density the same as fluid density,

we obtain similar results as before as shown in Fig. 4. Again, density fluctuations and large slip are ob-

served. From these results we conclude, that to prevent fluid particles from penetrating the walls increasing

the wall density of wall particles or the repulsion force may not be an effective solution.

We now return to the first test case above and employ the bounce-back boundary condition on the sur-

face of the walls, keeping the density and the conservative force of the wall particles the same as of fluid
particles. From the results shown in Fig. 5, we can see that the fluid density is low close to the wall. This

is due to the excessive repulsion of fluid particles away from the walls. One way to fix this problem is to shift

the wall particles away from the fluid–solid interface. The question is how to choose the shift distance? A

straightforward approach is to shift the wall particles by half inter-particle distance, which is 1
2
n�1=3
f . The

results from such simulations are shown in Fig. 6. The density fluctuations are less pronounced than in

previous cases while the level of the density in the middle of the channel is close to the desired level.

The velocity profile has improved, although some slip is still present. When we fix the density profile by

shifting wall particles, we also reduce the dissipative force (or friction) between the fluid particles and
the walls; the latter depends on the distance between particles. Bounce-back boundary conditions compen-

sate this effect, however, this correction may not always be sufficient and may lead to some small slip, as we

can see from the results of Fig. 6.
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Fig. 3. Left: Velocity profile. Right: Density and temperature profiles. (nw = 4nf; aw = af). The walls are simulated by freezing DPD

particles.
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Fig. 4. Left: Velocity profile. Right: Density and temperature profiles. (nw = nf; aw = 4af). The walls are simulated by freezing DPD

particles.
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Fig. 5. Left: Velocity profile. Right: Density and temperature profiles. (nw = nf; aw = af). The walls are simulated by freezing DPD

particles in combination with bounce-back boundary conditions (shown as shaded rectangles).

120 I.V. Pivkin, G.E. Karniadakis / Journal of Computational Physics 207 (2005) 114–128
3. New boundary conditions

In this section, we propose a new procedure to apply no-slip boundary conditions building on what we

presented in the previous section. Let us consider the wall, which is created by freezing layers of DPD

particles, see Fig. 7. The particles are distributed on a regular lattice with distance n�1=3
w . We know the

structure of the wall and the conservative force, so we can calculate the force exerted by the wall particles.
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Fig. 6. Left: Velocity profile. Right: Density and temperature profiles. (nw = nf; aw = af). The walls are simulated by freezing DPD

particles in combination with bounce-back boundary conditions. The wall particles are shifted by half inter-particle distance.

Fig. 7. Sketch of an imaginary plane on which we compute the force exerted by the wall particles.
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Specifically, to compute the average force per unit area due to wall particles we used 30 · 30 = 900 points.

They were uniformly distributed over a square patch with size n�1=3
w that was placed within a specified dis-

tance from the wall. The average force was taken to be the arithmetic average over force at these 900 points.

The plot of this force per unit area against the distance from the wall is shown in Fig. 8.

We note here that this force is proportional to the effective wall–fluid particle conservative force param-

eter, ae ¼
ffiffiffiffiffiffiffiffiffi
awaf

p
. Next, we compute the total force per unit area exerted by the wall particles for different

values of the wall density; the total force is the area under the curve in Fig. 8. Subsequently, we fit a second-

order polynomial using the computed values to obtain an analytic approximation for the total force in the
range of densities from nw = 3 to 25, and the results are shown in Fig. 9. We have set the coefficient ae to 1.0

in these computations. The approximation we obtained for the total force is
F w ¼ aeð0:0303n2w þ 0:5617nw � 0:8536Þ; ð8Þ

where nw is the wall density. This approximation is valid only for wall density nw variations between 3 and

25. For other values of the wall density or different wall structure (e.g. FCC lattice) we can employ a similar

procedure to obtain the total force Fw.
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We now consider the fluid in the cubic domain and ignore for the moment the presence of the walls. If we

place an imaginary plane on the surface of the simulation domain the force exerted by fluid per unit area in

this plane will be equal to the pressure of the fluid, which can be estimated by the expression, see [3]
Fig. 1

combin

(nw = n
P ¼ nfkBT þ 0:1afn2f : ð9Þ

If we move this imaginary plane away from the wall, the force decreases and at one cut-off distance rc from

the wall it is zero. Our objective now is to adjust the wall particle repulsion force coefficient, aw – and as a
result the effective conservative force coefficient, ae – in such way, that if we place a particle within one cut-

off distance from the wall, the average force acting from the wall will be equal to the force from the fluid.

We can parameterize the total force per unit area from the fluid as aP. A value of a that gives good results

in simulations for DPD fluid densities considered in this paper is 0.39. Specifically, for a = 0.39, the com-

puted fluid density level in the middle of the channel is within 1% from desired value. For fluid densities not

considered in this paper, a may be adjusted appropriately.

In summary, the final result is that we can estimate the value of the conservative force coefficient of wall

particles from
aw ¼ a2e
af

; ð10Þ
where
ae ¼
0:39ðnfkBT þ 0:1afn2f Þ

ð0:0303n2w þ 0:5617nw � 0:8536Þ : ð11Þ
In the following, we will present several prototype flow examples in order to evaluate the proposed bound-
ary conditions.

3.1. Poiseuille flow

The first test case is Poiseuille flow, as in the previous section, with the density of the fluid and the wall

density equal to 3. We use bounce-back boundary conditions on the surface of the wall. The conservative

force of the wall particles is adjusted as described above, see Eq. (10), and it is equal to aw = 3.2447. As we
0. Left: Velocity profile. Right: Density and temperature profiles. The walls are simulated by freezing DPD particles in

ation with bounce-back boundary conditions. The conservative force of the wall particles is computed as described in the text.

f = 3; aw = 3.2447).



Fig. 11. Poiseuille flow. Left: Velocity profile. Right: Density and temperature profiles. The walls are simulated by freezing DPD

particles in combination with bounce-back boundary conditions. The conservative force of the wall particles is computed as described

in the text. (nw = nf = 6; aw = 2.4320).
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can see in Fig. 10, we have some residual density variations at the ends of the channel, however in the mid-

dle of the channel the density has the desired level. In addition, we satisfy the no-slip conditions. Similar

cases for density equal to 6 and 9 are shown in Figs. 11 and 12, where the wall particle conservative force

coefficients are equal to 2.4320 and 2.4111, respectively.
We have also verified the DPD code by repeating case A (Poiseuille flow of simple DPD fluid) considered

in [13]. The simulation parameters are the same as in the original paper except the implementation of

no-slip boundary conditions. We use two layers of freezed DPD particles inside each wall region, in com-

bination with bounce-back reflection. The conservative force coefficient for wall particles is computed as

described above and is equal to 2.6588. The results of simulations are in a very good agreement with

[13]. In particular, the computed fluid velocity in the middle of the channel is 8.633 in comparison to

the value 8.639 predicted in [13].
Fig. 12. Poiseuille flow. Left: Velocity profile. Right: Density and temperature profiles. The walls are simulated by freezing DPD

particles in combination with bounce-back boundary conditions. The conservative force of the wall particles is computed as described

in the text. (nw = nf = 9; aw = 2.4111).



Fig. 13. Stokes oscillating plate problem. The fluid domain is a cube, periodic in two directions. The walls are simulated by freezing

DPD particles, in combination with bounce-back boundary conditions. The lower wall is oscillating.
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3.2. Unsteady Stokes flow

Next, we consider an unsteady case, namely Stokes flow over an oscillating flat plate, for which an ana-

lytic solution exists, see [14]. The fluid domain is a cube with size 10, while periodicity is imposed along two
directions, see Fig. 13. The lower wall is oscillating with velocity Ux = sin(Xt), where X = p/20. The density
of the DPD fluid is nf = 10, and the temperature is set to kBT = 1/3. The random and dissipative force coef-

ficients, r and c, are 1.73205 and 4.5, respectively. The conservative force coefficient of fluid particles, af, is

set to 3. The dynamic viscosity of the fluid was determined from the plane Couette flow simulations with

Lees–Edwards boundary conditions and is equal to 2.19. The walls are modeled as three layers of DPD

particles which move with prescribed velocity Ux, in combination with bounce-back boundary conditions.

Specifically the bounce-back rule is now implemented in a reference frame where the wall is stationary. The

conservative force for wall particles is computed as described earlier, see Eq. (10); we obtained aw = 0.9275.
The domain was subdivided into 20 bins in the x- and y-directions, and data were collected at 16 points
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Fig. 14. Unsteady stokes flow. Shown are flow velocity profiles at 16 instances during the period. Left: Time t = 2kp/8, k = 0, . . . ,7.

Right: t = (2k + 1)p/8, k = 0, . . . ,7. DPD simulations – triangles; exact solution – line.



Fig. 15. Lid-driven cavity flow. The fluid domain is a cube, periodic in one direction. The walls are simulated by freezing DPD particles

in combination with bounce-back boundary conditions. The lower wall is moving with constant velocity.
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during the periodic cycle by phase-averaging over the last 5 time steps over 50 periods. The fluid velocity

profiles at 16 instances during one full period plotted against the normalized distance from the oscillating

wall are shown in Fig. 14. The normalized distance is defined as Y = y(m/X)�1/2, where m is kinematic

viscosity of the fluid. The analytic solution is shown with solid line, while the DPD results are shown with

triangles. The results of DPD simulations are in a good agreement with the analytic solution. We note here

that the results are very sensitive to the boundary conditions. In the presence of slip at the oscillating wall,

the lower points on the sides of the plot will not match the analytic solution.

3.3. Finite Reynolds number lid-driven cavity flow

Next, we consider flow in a lid-driven cavity at finite values of Reynolds number and we compare results

with high-order accurate Navier–Stokes solutions. The DPD simulation parameters are similar to the pre-

viously described case. Here, the lower wall is moving with a constant velocity, Ux = 0.5475, see Fig. 15,
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Fig. 16. Lid-driven cavity flow. Velocity vector field comparison. On the left, results from spectral element simulations; on the right,

results from DPD simulations. The coordinates are normalized by the domain size, velocity by Ux.
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Fig. 17. Lid-driven cavity flow. Velocity profiles extracted along the vertical and horizontal lines. The coordinates are normalized by

the domain size, velocity by Ux.
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and the Reynolds number is 25. The simulation results are averaged over 200,000 time steps. We compare

DPD results with spectral element simulation results based on the solver NEKTAR [15]. Specifically, the

2D spectral element simulations were performed in a square domain. The size of the domain is 1 · 1; it
is discretized into 900 quadrilateral spectral elements with fourth-order polynomial expansion employed

in each element. On one wall, a constant velocity is prescribed, Ux = 1.0 while no-slip boundary conditions

are used on other walls. The Reynolds number is set to 25.

In Fig. 16, we present the computed velocity vector fields for spectral element and DPD simulations. We

have good agreement between the two simulations. We extract two velocity profiles, vertical and horizontal

cuts through the center of the domain, and present a more detailed comparison of simulation results in Fig.

17. On the left, the velocity magnitudes along the vertical cut and on the right along the horizontal cut are

shown. The spectral element simulation results are shown with lines, DPD results are shown with triangles.
Again, we have very good agreement.
4. Summary

In this paper we have introduced a new approach to impose the no-slip boundary condition for simple-

and complex-geometry flows. The main result is summarized in Eqs. (10) and (11) that present formulas for

the wall conservative parameter and the effective wall–fluid particle conservative parameter. The specific for-
mulas given are for a fluid with density nf in the range between 3 and 25, which covers values most often used

in DPD simulations. For other densities a similar procedure, as the one we outlined here, can be developed to

obtain an effective wall-particle interaction force. The presence of some density fluctuations in narrow re-

gions very close to the boundaries is caused by the conservative forces but this does not seem to have an ad-

verse effect on the velocity or the temperature distribution. To the best of our knowledge, all published

methods for imposing no-slip condition exhibit some degree of density fluctuations, even the method of Wil-

lemsen et al. [12], where the velocity profile extends beyond the surface and into the wall solid boundary. In

ongoing work, we have also verified the validity of the proposed method in flow around a periodic array of
square cylinders against molecular dynamics simulations. A more systematic study for such more complex-

geometry flows and also at higher Reynolds number will be presented in a future publication.
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While we have established agreement between DPD and Navier–Stokes equations with no-slip wall sur-

faces, we have not yet explored the interesting area of the non-continuum effects, e.g. in sub-micron sized

channels, where slip may be present [16]. Such study will require a new procedure to impose slip boundary

conditions in DPD based on Maxwellian reflections instead of the bounce-back reflections which are more

robust for imposing the no-slip boundary condition, see [6]. This issue, however, is not trivial and has not
been fully resolved yet even for the lattice Boltzmann method (LBM), see discussions in [17,18], and in [19].
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